CENTRIFUGAL EFFECTS WHEN A PLASMA IS ROTATED
IN A FLAT HOMOPOLAR DEVICE

A, I. Gannitskii UDC 533.9

We have investigated the effect of secondary overflows on the basic azimuthal motion of a
viscous plasma,

In an experimental study of a weakly ionized gas-discharge plasma in a homopolar device [1] we ob~
served certain phenomena that were unexpected from the standpoint of conventional hydrodynamics: the
shift in polarity led to a pronounced difference in the distribution of azimuthal velocity in the plane of sym-
metry of the installation,

In the general case, when a plasma is rotated in a2 homopolar device, the motion is three-dimensional
i.e., in the plane normal to the basic motion we find secondary overflows which may significantly affect the
entire flow pattern. These overflows arise in the motion of a viscous continuous medium in any curvilinear
channel and are a result of the gradient of centrifugal forces in the direction that coincides with the axis of
symmetry of the installation, Moreover, the nature of these overflows may be affected by the ion wind [1,
2] when we have the motion of a plasma with magnetized electrons.

’

However, for simplicity, let us initially examine the motion of a nonmagnetized plasma and we will
try to isolate the influence of the centrifugal effect exclusively as it pertains to the main flow in some spe-
cial case, without consideration of other factors, equally important in the general case.

Let us assume that the following conditions are satisfied. The flow regime is laminar and the tem-
perature is constant throughout the entire volume, thus also making it possible to hold that the viscosity
is constant; the plasma is incompressible. In the usual regimes the following conditions are valid: pres-
sure p & 1 torr; current I ~ 1 A; magnetic field strength ~2500 Oe, The temperature in this case is of the
order of 700°K, the Mach number M < 0.2, and the Reynolds numbers are small (10 = Re = 300) [1, 3];

Since the plasma is weakly fonized, we can neglect the induced electric current (this also follows
from an examination of the equations of momentum balance for the electron and ion component of the plasma)
and we can treat the current-density distribution as specified; in addition, Ohm's law can be presented in
the form j = gE.

Let us examine the rotation of a plasma in an axial electric field and in a radial magnetic field (in a
so-called inverted homopolar device) under the action of the Lorentz force jpBy (here j, is the density of
the axial current and B, is the radial magnetic field). Considering the above and bearing in mind the axial
symmetry, we write [4] the equations of motion
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Fig.1l. Profiles of the dimensionless velocity when @ = 0,05; 1) with consideration of secondary
overflows; 2) one-dimensional motion,

Fig.2, Distribution of dimensionless velocity: 1) when o = 0,1; 2) 0,5.

Fig.3. The process of establishing the function (the solid curve denotes & = 0,5 for £ = 2 and 5; the
dashed curve denotes o = 1,0 for £ = 3 and 5).
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We assume in Eq. (1) that
2
n=h(lj, (5)
n

where ji is the current density near the surface of the inside dielectric cylinder. This distribution is pos-
sible, for example, with segmented electrodes [5].

The system of equations (1)-(5) must be solved in conjunction with the Maxwell equations:
dB - . .
W:—rotE:O, divij=0, j=rotH, divB=0. (6)

According to the last expression, By = By(r;/r). We will demonstrate that relationship (5) is compatible
with the Maxwell equations, with an accuracy to the second order of smallness. Indeed, in the light of the
linearity of these equations, for a medium with constant physical properties we can represent the density
of the axial current in the following form:

PR
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Using (7) in conjunction with the first two equations in (6) and Ohm's law, we derive the new equation
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whose solution is given by the expression
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Here z = (h/2)¢ and we use the boundary conditions

(ﬂ) =0, ®=0whenf =+1,
dg /o

Since it is the motion of a plasma in a flat homopolar device that we are investigating, and since the condi-
tion ((h/2)/r1)? « 1 is satisfied for this case, with an accuracy to the second order of smallness in Eq. (7)
we can neglect the function & defined by relationship (9).

Let us now examine Egs. (1)-(4). For convenience, we turn to the dimensionless parameters
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where Q and I are certain characteristic values of the angular velocity and length.
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Let us write the expressions for the dimensionless stream function

N - a
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Having introduced all of these dimensionless parameters into system (1)-(4), having eliminated the pressure
in advance, we obtain the following equations:

f =%’ —fo—a,

(11)
oV = — 200" — 2ff.
This system is valid for a fairly large distance between the dielectric cylinders in comparison with the gap
between these when it is possible to neglect the effect of the viscosity on coaxial cylinders [6]. The func-
tions f and w are associated with the dimensionless velocity v and the stream function ¥ by the relation-
ships

V=t E), P=_C0@. (12)

For the characteristic angular velocity we have chosen Q = v/1% o = lei/szm is the parameter of electro-
magnetic interaction.

The boundary conditions will be defined by an absence of slip at the end faces of the homopolar de-
vice, Then, directing the £-axis from the lower end face of the installation toward the upper end face, and
bearing in mind the symmetry of the plasma stream relative to the equatorial plane, we will find that

whenfi=0 f=0=0 =0,whentf=%¢ f=0=0"=0. (13)

To solve the system of equations (11) with the boundary conditions (13) we employed approximate methods
of calculation. The solutions for f and w were presented in the form of finite series:

m
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in which £, and ¥, are certain basic functions which satisfy the boundary conditions. Consequently, solutions
(14) satisfy these conditions automatically, We have chosen the following expressions as the basic functions:
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As the collocation points at which the differential equations (11) are satisfied exactly we have chosen
the points 1, 2, 3, 4, and 5, i.e., £ changes in the range 0 = £ = 5, Moreover, the following conditions are
satisfied exactly:

P (5) = olV (5) = 0.
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To find the coefficients C, and &, independent of £, we employed the settling method. This method is based
on the Navier —Stokes equations for nonsteady motion, and these, after transformation, assume the form
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which change into Eq. (11) as t—,

An electronic digital computer was used to solve the problem and the following basic results were ob-
tained,

The influence of the secondary overflows on the main flow become noticeable even when o = 0,01,
When @ = 0,05 (Fig.1) the value of the dimensionless function f in the symmetry plane diminished by a fac-
tor of almost 2 relative to the value derived in the assumption that there are no secondary flows, When «
= 0.1 (Fig.2) we find a qualitative change in the velocity profile: the maximum value of the function shifts
from the symmetry plane in the direction of the end face. With an increase in « this trend is intensified.
The maximum value of the velocity function, for example, when o = 0.5, is smaller by a factor of approxi-
mately 5 than the quantity calculated in the one-dimensional approximation,

The total reduction in azimuthal velocity results from the partial transformation of the azimuthal
momentum into the momentum of the secondary overflows, as well as from the losses resulting from the
vigcous friction in these overflows, The qualitative change can be explained by the fact that the radial ve-
locity in the symmetry plane is directed outward, so that the segments of the medium moving from a zone
at a smaller tangential velocity shift to the zone with a greater value for the tangential velocity, and we
find a reduction in the azimuthal velocity., Approximately at the midpoint between the end face and the sym-
metry plane the radial velocity changes sign and the reverse phenomenon occurs, i.e., there is an increase
in the azimuthal velocity in comparison to its reduction in the equatorial plane,

The development of a strong momentum for the secondary overflows changes the pattern of motion
that prevails in the process of plasma acceleration, When a < 0,5 the values of f in the interval 0-£ asymp-
totically tend to the limit, When o =1 it is apparently impossible for the secondary flows to develop a rap-
idly increasing gradient of centrifugal forces. The function f therefore attains values somewhat greater
than for the steady state, and an oscillatory process develops, which, however, is rapidly attenuated, This
is shown in Fig, 3 for values of the function f for £ = 3 and 5. The oscillatory process is barely noticeable,
even when o = 0,5,

NOTATION

is the density vector of the electric current;
is the electrical conductivity;

is the vector of the electric field strength;
is the radial velocity component;

is the azimuthal component;

is the axial component;

is the kinematic viscosity;

is the density;

is the pressure;

is the radius;

is the coordinate along the instrument axis;
is the vector of the magnetic field intensity;
is the magnetic induction,
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